Cracking the Pseudocode:

Teaching Algorithms From a
Student Perspective

Lianna Beeching and Amanda Fan
Preston High School

CURRICULUM
' :PEDAGOGY

. AND BEYOND

*

We meet today on the lands of the Wurundjeri people of the Kulin Nation and
pay our respects to Elders past, present and emerging.

Learn more at www.wurundjeri.com.au

Draw the picture using the
algorithm!

*

éTART at the)

. :

Colour in
square

.

-

square down

Move one

_)

.

Move one
square right

(RENES

What do you notice about this code?

What's inefficient about it?

Colour in
square

.

square down

Move one

:

-

Move one
square right

How could we re-write it to be more efficient?

S

SR

Colour in
square

:

~

Move one
square down

J

!

~

Move one
square right

v

Colour in
square

;

END

(SRR

Session Structure

15 min

5min

5min

15 min

5min

5min

5min

Graph Paper Programming (Flow charts and unplugged learning)
Student Experience
Teacher Lens: Pedagogy and Curriculum
Next Steps: Ideas and Resources

Pseudocode Intro and Desk Checking
Student Experience

Teacher Lens: Pedagogy and Curriculum
Next Steps: Ideas and Resources

Questions, Discussion and Survey

Graph Paper Programming
(Flow Charts and Unplugged Learning)

How can we improve our earlier algorithm?

| nancl
GTART at the)
(& i ™
Colour in Colour in
square i square ' \ 1 Repeat three times:
\ J 2 Colour in square
* 3 Move one square down
Move one 4 Move one square right
END square down Repea’[3 times 5 Colour in square
Move one

square right J

Student Experience

Most loops check if they should keep running based on a condition:

‘ Colour in

-«+—Ye
square |

Y
END

Student Experience

START at the

ave you coloured
in three squares?

NO—p

Colour in
square

v

Move one
square down

&

Y

Move one
square right

While less than three squares coloured
Colour in square
Move one square down
Move one square right

EndWhile

Colour in square

A computer needs to keep track of how many loops have
happened so far - this is where a counter variable comes in!

éTART at the > Loops = @

— o e —
lil b+ o J annc = 2
Wil LeE LY - AL S ¥
i = S —
iDL
LA

- Ur 1n square
loops =0 I Move one square dowr
Move one square right
+ loops = loops + 1
) EndWhile
Colour in Yo Nd Colour in Colour in square
square ; ™ square
Y * \
(END) Sé\ﬂz\r'z e What would happen if
we didn't have the step
’ Y "loops = loops +1"?
loops Move one
=loops + 1 square right

Student Experience

A desk check is where you run an
algorithm with pen and paper!

Desk checks are a great way to
understand how an algorithm works

and to check for bugs/ errors.

For this desk check, we will:

* Follow each step, one line at a time
e Write down the value of variables as

they change

Student Experience

(START atthe 4)
——
loops =0

Y

Colour in Ne YNE'S Colour in
square i square

| 2 I s
END Move one
/ square down
, ¥
loops Move one
=loops+1 [| square right
Desk check:
'S loops

Colour in
square

A
loops Move one
loops + 1 square right
4
Colour in
square

END

Move one
square down

loops = @
While loops < 3
Colour in square
Move one sguare right
Colour in square
Move one square down
loops = loops + 1
EndWhile

—

Your Turn: Solve these puzzles by desk checking!

Puzzle 3: mild

G
I/ START)

Move three ‘
squares down ‘
|

(————)

| Colourin o Colour in
| square | square
g
== eI Y
\/ END \ loops Move one
& 2 =loops + 1 square right

Student Experience

Move three squares down

loops = @

While loops < 3
Colour in square
Move one square right
loops = loops + 1

End while

Colour in square

Il
l

|

Puzzle 4: medium
This is an example with
two loops in a row!

Colour in
square

5
I‘l

Y
Colour in
square

loops
=loops +1

loops
= loops +1

loops = @

While loops < 3
Colour in square
Move one square right
loops = loops + 1

EndiWhile

loops = @

While loops < 3
Move one square down
Colour in square
loops = loops + 1

EndiWhile

Puzzle 5: spicy
This is an example of a
nested loop, a loop inside a

| C (" smrr)
__d

outLoops =0

Move three | outLoops
squares up | = outLoops +1

outLoops < 3? N END
[y
| Move one Yes
quuare right
| inLoops=0 No. Ye

Move one
square down
Colour in
square

inLoops
=inLoops +1

inLoops = @
outlLoops = @

While outloops < 3
While inLoops < 3
Move one square down
Colour in square
inLoops = inlLoops + 1
End while
inLoops = @
Move one square right
Move three squares up
outLoops = outloops + 1
End while

Modify a Puzzle!

L;Q Add a step into puzzle
- 1 4 so that it creates this

pattern instead:

loops =0 |« No Yes Colour in
square
EEEEEEEE
Y
~ Move one
(END 0o Yos— RIS square right
Q 4 square down
; loops
Colour in = loops +1
square
loops

= loops +1

Student Experience

Your Turn: Write an Algorithm to Create Each Picture!

Puzzle 6
(fill in the Puzzle 7 Puzzle 8

blanks)

*

Student Experience

Linking to the Maths 2.0 Curriculum

Level 5 (number)

Level 6 (algebra)

Level 7 (space)

Level 8 (algebra, space)

Level 9 (space)

VC2M5N10
Follow a mathematical
algorithm involving
branching and repetition
(iteration); create and
use algorithms involving
a sequence of steps and
decisions and digital
tools to experiment with
factors, multiples and
divisibility; identify,
interpret and describe
emerging patterns.

VCMBAO3
Design and use
algorithms involving a
sequence of steps and
decisions that use rules
to generate sets of
numbers; identify,
interpret and explain
emerging patterns.

VC2M7N10
Design algorithms
involving a sequence of
steps and decisions that
will sort and classify sets
of shapes according to
their attributes and
describe how the
algorithms work.

VC2MBA04
Use algorithms and
related testing
procedures to identify
and correct errors.

VC2M8SPO4
Design and test
algorithms involving a
sequence of steps and
decisions that identify
congruency or similarity
of shapes and describe
how the algorithm
works.

VC2MISPO3
Design, test and refine
algorithms involving a
sequence of steps and
decisions based on
geometric constructions
and theorems; discuss
and evaluate
refinements.

Teacher Lens

Linking to the Digi Tech 2.0 Curriculum

L evel 5-6

Level 7-8

Level 9-10

VC2DTCDO032
Design, modify and follow

simple algorithms
represented diagrammatically
and in English, involving
sequences of steps,
branching, and iteration.

VCDTCD042
Design algorithms
represented diagrammatically
and in English, and trace
algorithms to predict output
fora given input and to
identify errors.

VC2DTCDO052
Design algorithms
represented diagrammatically
and in structured English and
validate algorithms and
programs through tracing and
test cases.

Teacher Lens

Linking to the 2.0 Curriculum

Level 5 (number)

Level 6 (algebra)

Level 7 (space)

Level 8 (algebra, space)

Level 9 (space)

Follow, modify and create algorithms with
sequences of steps, branching (IF) and
iteration (Loops)

Content link: factors,
multiples, divisibility

Content link:
sequences/ patterns
of numbers

Likely need to intro
variables to do the
content link

Trace algorithms to predict outputs and to
spot and correct errors.

Continue designing algorithms like in levels
5-6. Start describing how they work.

Content link:
classifying/ properties
of shapes

Content link:
similarity/ congruence
tests

Start introducing
“structured English”
(pseudocode)

Similar to levels 7-8.
Develop tests to
check if an
algorithm functions
the way it should.

Content link:
constructing angles
and shapes

Good time to
explore logical vs.
semantic errors

Teacher Lens

Linking to Pedagogy

Desk Checks/
Tracing

There is research to support the usefulness of tracing code. In 2011 Lister describes that
novices need to be able to trace code with more than 50% accuracy before they can begin to
confidently write programs of their own (Lister, 2011). This follows on from years of research or
this topic including a multi-institutional study published in 2004 showing that tracing code
improves progaramming skills. Tracing is a practice that basically embodies a range of skills - a

new programmer needs to be able to read, understand and explain how code works before
being able to confidently write new code.

(Clear, 2011)

Teacher Lens

Linking to Pedagogy

Scaffolding and
difficulty ramp —
Moving from
following to writing

After running this activity with three classes, this was the trickiest bit!

Year 8s struggled more than Year 7s - perhaps confidence/ dispositions are a bigger barrier
than the actual task

Scaffolding with a fill the blanks helped
Very slowly increasing the complexity of the algorithms involved when starting writing helped
Adding the “modify” step — not sure yet if it helped!

Teacher Lens

Linking to Pedagogy

Confidence

Code Kitten
i

=
S@ax wizard

-
Pile of Lego

®

Typewriter
monke

Competence

From the blog “Code? Boom”

https://codeboom.wordpress.com/2016/02/22/how-do-you-actually-teach-programming/

Teacher Lens

Scaffolding and
difficulty ramp —
Moving from
following to writing

https://codeboom.wordpress.com/2016/02/22/how-do-you-actually-teach-programming/

sameSides = 0?

Student Experience

sameSides = number of

If sameSides = @ Then
| Classify triangle
Else If sameSides = 3
| Classify triangle
Else

| Classify triangle
End If

0 <] O E W N

Teacher Lens

sides of same length on triangle

as a scalene
Then
as an equilateral

as an isosceles

Next Steps — Other activity idea: Sorting Shapes

m) I - T
Vertebrate 1 } [1 [
Rectangle Square Trapezium
Opposite sides equal length All sides equal length Sides any length
e All angles 90° All angles 90° Any angles
Opposite sides parallel Opposite sides parallel Two sides parallel
Does it have feathers?
Yes
Parallelogram Rhombus Kite
et e S Opposite sides equal length All sides equal length Adjacent pairs of sides equal length
No Opposite angles equal Opposite angles equal Two equal angles (opposite)
Opposite sides parallel Opposite sides parallel No parallel sides
Does it have scales?
Yes N|°
l Quadrilateral
% Any side lengths
. Any angles
Sides can be not parallel

Next Steps

Next Steps - Other activity idea: Sorting Shapes

Thanks to Chris Hill for trying this with his class and sending it through!

Student Experience Teacher Lens Next Steps

Next Steps -Taking this Activity Digital

2yl Game Lab

¢ O Untitled Project . : J—
1= g b me) Rename Share New project w Lianna w o —

(@00.0) . L
World I Sprites 1
i croups - Drawing ©
I Control Math
3 =
I Variables I Functions
4
~ 5
6
Vs
_ 1~ function draw() {
e for (var loops = 0; loops < 87 loops++) {
3 rect (loops * 50, loops * 50, 50, 50);
‘nostroke () | 4 }
(0,400
5)
® Show grid

Thanks to Naomi Creelman for finding this online resource!
A fantastic middle ground between block-based and structured code.

Research suggests more structured coding blocks deepen understanding compared to unstructured blocks like in Scratch (Rose, 2016)

Research also suggests that modifying code to achieve a specific goal is a great stepping-stone towards writing new code (Lee, et. al.,
2011)

Next Steps

Next Steps - Bonus algorithms to steal!

Next Steps

Next Steps -Resources and Links

Code.org game lab project

Lucid Chart

Code.org, Grok Academy, codeclubau.org
and CSS unplugged

Structured block-based code editor (seen in
previous slide)

Great for creating flowcharts (used in earlier
slides) - to fiddly to be student-facing, but
good for resource creation

Fantastic sources of unplugged lesson ideas
and activities (the picture activity we did
was adapted from code.org -

https://studio.code.org/s/coursed-2022/lessons 2)

Next Steps

https://studio.code.org/s/coursed-2022/lessons/2

Pseudocode Intro and
Desk Checking

Pseudocode Warm-Up: Assigning values to variables!

In the code snippet to the right:

:!'nt r = 2, e What do you notice?
int s = 4;
r = s * Whatdo you think each line does?

* Whatdo you think the final values of r
and s would be?

Problems taken
from (Clear, 2011)

Student Experience

Pseudocode Warm-Up: Assigning values to variables!

Let’s try another!

Cheat sheet:
Mmeans “crec ¢ “intx=3" means “create an integer
1d assign it e called x and assign it a value of 3”

* “Xx=y”means “assign x a value of y (the
value of y”

Problems taken
from (Clear, 2011)

Student Experience

Pseudocode Warm-Up: Assigning values to variables!

int = 5;
) Last one!
int = 3

Cheat sheet:

|
~J

* “intx=3" means “create an integer
called x and assign it a value of 3”

-

« “x=y” means “assign x a value of y (the
value of y”

- .

s
|
< MO N M

Problems taken
from (Clear, 2011)

Student Experience

What is pseudocode?

Pseudocode is a human-friendly way of planning out code.

Computers can't read pseudocode, but we use it to jot down
the ideas and structures behind a program/ algorithm, without
needing to worry about specific languages and syntax.

Pseudocode doesn't have a specific way it needs to be written,
but we will be trying to write it in a similar way to how VCAA (the
people who write the year 12 exams) writes it.

Student Experience

Student Experience

Common Building Blocks in Pseudocode

Building block Example Description

Print print c Outputs/ displays a value
Assign a i €1 Sets the value of the
value c<€c-1 variable on the left to the

x € a+h yalueon theright.

Return Return area Similar to print, but for
outputting the final value
of a function.

Inputs See below Defines the variables and
functions involved at the
start

Inputs: f(x), the function to integrate
a, the lower terminal of integration
b, the upper terminal of integration

n, the number of trapeziums to use

Runs one chunk of code depending on a condition, then skips the other chunks of code.

input a, b
if a > b then
print a
else
print b
end if

Conditional Statements - IF, THEN, ELSE

If @ and b were inputted as e
5and 12 respectively, if mark > 90 then
what’s the output? et

else if mark =75 then
print ‘B’

else if mark > 60 then
print ‘C’

else if mark = 50 then
print ‘D’

else
print ‘E’

end if

If mark was inputted as
68, what’s the output?

Student Experience

Loops - FOR

Repeats the code inside the loop a certain number of times from a starting number to a finishing number.

Algorithm: Desk check: Algorithm:
sum < (input n
sum < (

for i from 1 to 4
for i from 1 to m

SUM — Sum + i I
Sum < sum + —
end for i3

. end for
print sum

print sum

Desk check:
(n = 3)

Student Experience

Loops - WHILE
Repeats the code inside the loop while a condition is met.

Once the condition is not met, the loop stops.
Algorithm: Desk check: A 13 Desk check:

while A% > 2.01 or A% < 1.99

count «— ()
remainder « 72 A« 0.5x% (A + %)
while remainder > 14 =
print A, A3
count <« count + 1
end while

remainder «— remainder — 14
end while

print count, remainder

Student Experience

Your turn: Have a go at desk checking some of the other algorithms!

define factorial(n):

product « 1

sum <« 0

for { from 1 to 10

for i from 1 to n] 1
Sum «— sum + ————
product < product X i factorial(i)
T end for
return product print sum
Run forwhena =1andb=3 sum < 0

input a, b
while a+ b <20
b« b+2a
a—a+?2
end while

print a, b

for i from 1 to 5
SUM — sum + i
end for

print sum

Student Experience

Linking to Pedagogy

|dentifying/
Describing Code

Intro simple, small snippet to explore and predict
Then add a little explicit info, try again

Then add complexity

Reduce cognitive load of code comprehension -
Syntax load (Donaldson and Cutts, 2018)

Teacher Lens

Linking to Pedagogy

More Desk Checks/
Tracing

« Starts to really shine when working with
pseudocode and more variables.

* Gives a structured way to just take the code one
step at a time - aiding with dispositions.

« FEasyforyou as the teacher to see their thinking
as well!

Teacher Lens

Linking to Curriculum

Goal moving into Year 10 and VCE: Move into Pseudocode

Still using the same concepts as earlier years — just more granular now!

Level 10 (algebra)

Methods U1/2

Methods U3/4

VCM2M10A06
Implement algorithms that use

data structures using pseudocode
or a general-purpose programming
language.

Level 10A (algebra)

VC2M10AA02
Devise and use algorithms and
simulations to solve mathematical
problems.

The fundamental constructs
needed to describe algorithms:
sequence, decision (selection,
choice, if ... then ... blocks) and
repetition (iteration and loops)

Construction and implementation
of basic algorithms incorporating
the fundamental constructs using
pseudocode.

Same descriptions as Units 1/2.

Apply ideas to more complex
algorithms, often with the following
content:
* Newton’s Method
* Trapezium method for area
under a curve
» Bisection Method

Teacher Lens

Tripping points along the way

Sequencing of complexity of problems
- need to manage this carefully with fragile dispositions and confidence!

Loops — WHILE
Repeats the code inside the loop while a condition is met.
Once the condition is not met, the loop stops.

Algorithm: Desk check: A3 Desk check:
cent +— () while A > 11+ 10 or A <11-10"*
11
remainder « 72 A+ 0.5 X {.-\ A]
while remainder = 14 print A, A’
COURE — couni + 1 end while

remainder «— remainder — 14

end while

print count, remainder

Added this in way too soon! Cognitive load
was already full with the idea of a while loop,
then the scientific notation added

Teacher Lens

Tripping points along the way

Sequencing of complexity of problems
- need to manage this carefully with fragile dispositions and confidence!

This loop within a
loop happened too
early in the problem
set — conceptually
much trickier.

Prompted great
convos about desk
checking with tables
vs. lists though!

define facterialin):
product « |
for { from 1 to n
product «— product X i
end for

return Iin‘J{."H('F

sum — ()

for i from 1 to 10
1

Sum — sum + ——
factorial(i)

end for

print sum

c =10

for a from 1 to 2

end for

sient —)

for i from 1 to 5
sum — sum+ i

end for

print sum

Teacher Lens

Next Steps - Other Pedagogical Approaches

Code Highlighting and
Description

(1) Underline the variable names and draw a box
and label any input, process or output sections

inputs

height = input (“What is your height in metres?”)

weight = input (“What is your weight in kg?”)

process
bmi = weight / (height ** 2)

output
print (“ Your BMI is ” + str(bmi))

(2) Describe what happens when particular sections
of the program are executed

A prompt is displayed to ask the users height and
weight and the results are stored in two variables
that are created to store the floating point and
integer values.

The current value of height is fetched from the
computers memory, squared and the result is used to
divide the current value of weight. The result is
stored in a new variable in the computers memory
called bmi

The current value of bmi is fetched from the
computers memory, converted into a string value and
then joined with the string value to create a new
string which is displayed on the screen to the user

(Donaldson and Cutts, 2018)

Next Steps

Code Highlighting and

Description

Next Steps - Other Pedagogical Approaches

o= \ne comments g
senclosed within Y

A\ /XX n C+yv

Tre sy 99

(from one of my assignments at Uni)

‘C——’b——*-_j
rm\$- {.)u achof Aowes
T o 1
o\ eacin
frpu%{‘y% weke (Y N
& reoc \ng L)

(oMmbineo

?@‘1{\# (_} ~ wrte M nel :)

iﬁg é\“ 1'«3‘ \”{\?{?)\ S ._\uj‘\iri’ﬁ‘h\e_ 'y (__:)
inr () = ston @)

~2eh Yo dacare vaciclle
N CH v cus dcd\are
q&omﬁmlj when ussﬁsﬁ\nj
n W

Next Steps

Next Steps - Other Pedagogical Approaches

PRIMM - an approach to
scaffold towards writing
code

Predict - given a working program, what do you think it will do? (at a high level of
abstraction)

Run - run it and test your prediction

Investigate (Explain) - get into the nitty gritty. What does each line of code mean? (low
level of abstraction). I'm not sure that explain is quite the right term.

Modify - edit the program to make it do different things (high and low levels of
abstraction)

Make/Create/Design — design a new program that uses the same nitty gritty but that
solves a new problem. | had always called this Create, and it is certainly creative but
reading Tedre & Denning's recent paper caused me to change this to Design, as a key

computational thinking skill.

(Sentence, 2017)

Next Steps

Next Steps - Bonus Desk Check Examples

START

SETa=2

SET sum =0
WHILE a <5 V/\/

sum=sum+a

whie lcop

repeols +he_ Fuo
skeq® ont\ oo
s 5

a=a+1l

END WHILE

PRINT sum

@cmo\ Exe:uﬂ-‘ugﬂ D"E le%of-lﬁ\ﬂ
NPEL N

30{*\[(25)(50\ J

Screen’,

A

B 8 Consider this pseudocode which sorts a list of five numbers from smallest to largest:

v

XX RA

1 [starT /S OUTPUT:

2 [SETlist=[8,5,10,2,7] Q.510.8.7)
3 [sETa=0/ 2,5,7,8,10
4 |FORnFROM1TO 4 // . 2,5,7.8,10

5 a = list element at position ri// ‘/jfj p 2,5,7,8,10

6 FOR m FROM (n + | TO5 v/ AV

7 IF list element at position m < G‘I/J@E’\#M (C\k ? /)‘Q\/
8 f a = list element at position m‘/‘/ 3 w

s [\ enor AW/ JLJN

10 | ENDFOR/Y/

n \ SWAP a WITH list element at position n 0'/-\/

12 | “PRINTIist /1,

13 | END FOR

14 | END

alt e
g2 8 loond

Next Steps

Next Steps - Bonus Engage/ Warm-up

Step 1
Step 2
Q@ Step 3
Step 4
Step 5

1"
21
31
41
51
61
"
81

91

The Sieve of Eratosthenes - A famous algorithm!

Create a list of all natural numbers from 1 to n.

Cross out | and let p be 2 (the first prime).

Circle p and then cross out all the other multiples of p.

Let p be the smallest number in the list that has not been marked.

If p* < n, then repeat from Step 3.

2 3 < 5 6 7 8 9 10
2 | 13 | 14 | 16 | 16 | 17 | 18 | 19

2 | 23| 24| 25

8

2T |28 |

42 43 44 45

&

20

30

32 |33 | M4 | 35 |3 | 37| 3B | W | L0
47 48 49 50

60

§2 | 53 | 54 | S5

&

57T | 58 | S8

62 63 64 65

&

67 68 69 | 70

2 |73 |74 |75 |76 | T? |78 | 1O

82 831 84 B85 86 87 88 89

82 983 94 95 96 97 98 99 100

|| Follow the algorithm below one step at
atime

"7 What does this algorithm do?

Next Steps

o

Next Steps - Bonus Example from 3/4 Methods (Newton’s Method)

With a partner, discuss and annotate

count « 0
remainder « 72
while remainder > 14
count « count + 1
remainder «— remainder — 14
end while

print count, remainder

This algorithm is written in pseudocode.
It contains a while loop, which means the instructions
between "while" and "end while" repeat until the
condition is no longer met.

With your partner:
[| Discuss what you think is happening
[] Annotate each step with what you think it means
[1 Try to describe overall what the algorithm does
[] Write down the output of this algorithm

As a class, share and discuss your answers.

Processing - Desk Check Newton’s Method

The algorithm below shows how to use Newton’s Method to solve —x3 + 5x2 —3x + 4 = Onearx = 4

(here, the starting “guess” pfx = 3.8 is used)

define f(x):

.
return —x> + 52 -3x+4

define Df(x):

return =3x2 + 10x -3

x < 3.8
while f(x)> 107® or f(x)<-107°
X — x— 1AS)

Df(x)
print x, f(x)

end while

Use your CAS to help with the calculations here,

The first four lines basically just define the function and
derivative function &

Desk check and fill in the table below using this algorithm:

x | 00

Initial values

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Iteration 5

Why did we stop after the fifth iteration?

Next Steps

Next Steps - Resources and Links

VCAA Pseudocode Page Super clear resource on key pseudocode
https://www.vcaa.vic.edu.au/curriculum/vce/vce- ideas, including VCAA style syntax
study-designs/Pages/PseudoCode.aspx examples and questions

Programmer’s Field Guide Free online textbook/ resource published
https://programmers.guide/ in a Uni collab. Fantastic resource if you

want to deepen content knowledge. This
was my bible for Uni!

Digital Technologies Hub Great bank of resources and ideas for
https://www.digitaltechnologieshub.edu.au/plan- teaching pseudocode, a[gorithms and
and-prepare/scope-and-sequence-f-10/years-7- c

. coding.
8/general-purpose-programming/flowcharts-and-
pseudocode/

Next Steps

https://www.vcaa.vic.edu.au/curriculum/vce/vce-study-designs/Pages/PseudoCode.aspx
https://www.vcaa.vic.edu.au/curriculum/vce/vce-study-designs/Pages/PseudoCode.aspx
https://programmers.guide/
https://www.digitaltechnologieshub.edu.au/plan-and-prepare/scope-and-sequence-f-10/years-7-8/general-purpose-programming/flowcharts-and-pseudocode/
https://www.digitaltechnologieshub.edu.au/plan-and-prepare/scope-and-sequence-f-10/years-7-8/general-purpose-programming/flowcharts-and-pseudocode/
https://www.digitaltechnologieshub.edu.au/plan-and-prepare/scope-and-sequence-f-10/years-7-8/general-purpose-programming/flowcharts-and-pseudocode/
https://www.digitaltechnologieshub.edu.au/plan-and-prepare/scope-and-sequence-f-10/years-7-8/general-purpose-programming/flowcharts-and-pseudocode/

Questions and
Discussion

Question:
0 What would you like
to know more about?
Discuss:

What excites you or
engages your curiosity?

How could this work
link to your context?

Get in Contact!

We are super happy to send and share any resources and/or collaborate!

Amanda Fan Lianna Beeching
Head of Cohort Learning Specialist/ Timetabler
Preston High School Preston High School

amanda.fan@education.vic.gov.au lianna.beeching@education.vic.gov.au

THE MATHEMATICAL
ASSOCIATION OF VICTORIA

'
®og,

Eve ntApp

®
@
L
LD
o
.
»
o

eoo*°*?®
..:.ocoo.,
e °
..
..

. X
°

o’

MAV24

CONFERENCE

S App Download Instructions

Step I: Download the App ‘Arinex One’ from the App Store or Google Play

App Store Google Play

Step 2. Enter Event Code: mav

Step 3: Enter the email you registered with
Step 4. Enter the Passcode you receive via email and click ‘Verify'. Please be sure to check

your Junk Mail for the email, or see the Registration Desk if you require further

assistance.

MAV24

THE MATHEMATICAL
CONFERENCE

ASSOCIATION OF VICTORIA

e b o \:ﬁ.:. LY .-‘-.‘
...;

s s ‘.
“"'“-p,.;

‘e
‘e, -
...'. f.". .

.o..' "..;'0.;.’ oo s . . 3
e_ 3 . @'@ ..® o et%’
e ° A ® .. i . .N\.” °
& L . © P es
[] ® @ @
Gai:.. ..\ .0..
" PRy S ' ..' 3 A02 - (Year 1to Year 6) Supporting
e I n I e o 5 | O B High Potential and Gifted Learners in
te a 200 Mathematics
. ‘,I.. . " P ® .
e =) L 4 ° ¢ :
° E ° @ .. ®
° = ® o . 2 .
. . P ° ¥¥ Add to Favourite
. 5 o @ ol .
o > ° 2 ® (£ cComplete the Survey
° L] @
b 3
® > ° L] ° ®
~ > » ° (® Description
L b © . 0' o
° " ° @ oF ..
s ¢ 5 I | ° K= speaker
¢ : © s -
° o &) e o A4 @l DrChrissy Monteleone
~ e © v ACU
°] = o ® L
o [] o g @ ..
° [2 . i]
[}) ® ‘. .
[]) ® ..
Y @
@ ® ® . 'y
° PY ® .‘ o
@ o ® ® PS
® I ® [®
] o [® o
®© ® Y ‘.
© o ©
o -

References/ Further Research

Clear, Tony, Jacqueline Whalley, Phil Robbins, Anne Philpott, Anna Eckerdal, Laakso Mikko-Jussi, and
Raymond Lister. “Report on the Final BRACElet Workshop:” Journal of Applied Computing and Information
Technology 15, no. 1 (June 23,2011).

Donaldson, Peter, and Quintin Cutts. “Flexible Low-Cost Activities to Develop Novice Code Comprehension
Skills in Schools.” In Proceedings of the 13th Workshop in Primary and Secondary Computing Education, 1-4.
Potsdam Germany: ACM, 2018. https://doi.org/10.1145/3265757.3265776.,

Lee, Irene, Fred Martin, Jill Denner, Bob Coulter, Walter Allan, Jeri Erickson, Joyce Malyn-Smith, and Linda
Werner. “Computational Thinking for Youth in Practice.” ACM Inroads 2, no. 1 (February 25, 2011): 32-
37. https://doi.org/10.1145/1929887.1929902.

Sentance, Sue. “Exploring Pedagogies for Teaching Programming in School.” Computing Education for All
Young People, Wherever They Are in the World (blog), February 20,
2017. https://suesentance.net/2017/02/20/exploring-pedagogies-for-teaching-programming-in-school/.

»

Rose, Simon. “Bricolage Programming and Problem Solving Ability in Young Children: An Exploratory Study,
August 6, 2016.

https://doi.org/10.1145/3265757.3265776
https://doi.org/10.1145/1929887.1929902
https://suesentance.net/2017/02/20/exploring-pedagogies-for-teaching-programming-in-school/

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51

